En el capitulo anterior vimos que existía una regla para binomios al cuadrado, al finalizar nos quedamos con la duda de que si existía una para trinomios al cuadrado, en seguida veremos que ocurre y si existe una... ¿cual es?.
Primero empezamos con unas multiplicaciones sencillas de trinomios al cuadrado, las cuales no tienen numero ni exponente
al realizar las anteriores multiplicaciones nos dimos cuenta de que existe un cierto proceso, lo que hicimos fue:
1)Sacar el cuadrado del primer termino, que en el primer problema es la letra "a"
2)Multiplicar el primer termino (la letra "a") por el segundo (la letra "b") y al resultado sacarle el doble
3)Multiplicar el primer termino (la letra "a") por el tercero (la letra "c") y al resultado sacarle el doble
4)Sacar el cuadrado del segundo termino (la letra "b")
5)Multiplicar el segundo termino (la letra "b") por el tercer termino (la letra "c") y al resultado sacarle el doble
6)Cuando obtuvimos el resultado acomodamos la letras de forma alfabéticamente y los exponentes del mayor al menor
Ahora aplicaremos este procedimiento a 3 multiplicaciones pero ahora también tendrán números
nos podemos dar cuenta de que también se siguió la misma secuencia que en las multiplicaciones anteriores, y no cambia nada, solo que aquí ya hay números pero al momento del resultado se acomoda de la misma manera, sin importar cuan tan grande sea la cantidad del numero, ahora lo intentaremos cambiando uno de los signos a negativo.
si observamos bien nos podemos dar cuenta de que solo cambiaron dos signos, el segundo y el quinto, y que en todas la multiplicaciones es así, claro esto pasara solo cuando el segundo signo de los trinomios sea negativo, a continuación haremos las 3 ultimas multiplicaciones pero ahora con exponente.
tampoco hubo ningún cambio en el proceso con el cual sacamos nuestros resultados, ahora si podemos estar seguros de que existe una regla para trinomios al cuadrado, la cual es
"El cuadrado del primer termino mas el doble del producto del primer termino y segundo termino, mas el doble del producto del primer termino y tercer termino, mas el cuadrado del segundo termino mas, el doble del producto del segundo termino y segundo termino, mas el cuadrado del tercer termino"
No se pierdan otro interesante capitulo, que sin duda alguna sera un gran tema